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Dependence of the Transverse Thermal Conductivity of
Unidirectional Composites on Fiber Shape
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The model for the traverse thermal conductivity of unidirectional composite
materials published by Springer and Tsai, which yields good results when com-
pared to experimental results, is generalized to include fibers having elliptical
cross sections. It is shown that the thermal conductivity of the unidirectional
composite normal to the filaments depends strongly on fiber shape.

1. INTRODUCTION

To study the transverse thermal conductivity of unidirectional composite
materials, in 1967 Springer and Tsai [ 1 ] published a short but interesting
paper in which they tackled the problem from two different approaches.
In the first approach, recognizing the analogy between this thermal con-
ductivity problem and the unidirectional composite response to a shear
loading problem, the results by Adams and Doner [2] originally published
for shear loading were adopted, which essentially is a finite difference
numerical approach. To compare with the shear loading analogy results for
thermal conductivity, they developed this so-called thermal model. In
Fig. 1, in the region intercepted by the fiber (inner region), the heat flux is
treated like a series arrangement taking into consideration the fiber surface
curvature. This heat flux result is combined with the heat flux obtained
from the regions not affected by the presence of the fibers (outer region).
In a simple algebraic exercise, one can establish that in a rectangular fiber
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Fig. 1. Rectangular fiber cross section.

case, the thermal model results approach the series results for laminae if
the height of the filament approaches the height of the unit cell. Springer
and Tsai also examined a circular cross section fiber in their thermal
model. When they compared the thermal model with the shear loading
analogy model, they claimed that the thermal model predicted a slightly
lower value, about 5% lower for a fiber volume fraction less than 75%,
and about 10% lower for a fiber volume fraction greater than 75%.

Then, when they compared their theoretical predictions with the experi-
mental results from Ref. 3, they found that for a high thermal conductivity
ratio (kf/km = 666, where kf is the fiber transverse thermal conductivity
and km is the matrix thermal conductivity, assumed to be isotropic), the
data agree reasonably well with the results of the shear loading analogy
model but are higher than the values predicted by the thermal model. The
data also indicate that the assumption of cylindrical fibers is more
appropriate than that of square fibers. The differences between the shear
analogy model and the thermal model can be understood in that for the
shear analogy model, a more accurate two-dimensional temperature dis-
tribution is assumed taking into account the heat flux continuity conditions
normal to the fiber surface which represent the true physical description;
however, the thermal model certainly lacks these conditions. Actually, the
temperature is only a function of the distance, in this case x, (Fig. 1) and
the normal heat flux continuity condition across the boundary fares well
only at the height y = 0, but the condition begins to deteriorate as y moves
away from the center (Fig. 3 of Ref. 1). Nevertheless, the thermal model
still remains a fairly reliable and simple model.

We are also encouraged by the recent experimental work of Rogers et al.
[4] who have established the inverse linear relationship of the transverse
electrical resistivity to the aspect ratio of ribbon-shaped carbon fibers.
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Since the strong inverse correlation of electrical resistivity and thermal con-
ductivity is well established, they concluded that the fiber transverse ther-
mal conductivity should increase further as their aspect ratio increases.
Motivated by all the evidence, we would like to extend the thermal model
to different fiber cross sections, and hopefully we will be able to predict
quantitatively how the transverse composite thermal conductivity depends
on the fiber shape. In the following, the derivation is straightforward, and
the nomenclature from Ref. 1 is adopted.

where 2a and 2b are the dimensions of the unit cell or the filament spacings
in x and y directions. km and kf are the thermal conductivities of the matrix
and fiber, respectively. The parameter s is the maximum dimension of the
filament in the y direction, and h is the width of the filament at a given
height y (Figs. 1 and 2).

Rectangular Fiber. For a rectangular fiber cross section, assuming the
third dimension is infinitely long, Eq. (1) can be reduced to

Fig. 2. Elliptical fiber cross section.
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2. GENERALIZED THERMAL MODEL

In Ref. 1, Eq. (8), it was shown that the transverse composite thermal
conductivity k22 can be expressed as
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Equation (2) can be expressed as the two following equivalent forms:

We recognize that Eq. (2) really is a combination of two components, as
shown in Eq. (3). First, we combine the thermal conductivity of the fiber
and matrix in series fashion to arrive at the value of ks; then we combine
ks and km in parallel fashion to arrive at the final k22 • Of course when s
approaches 2b, k22 is just ks, which was referred to as laminae in the series
model of Ref. 1.

In Ref. 1, Springer and Tsai further let a = b for a square packing
array and s = h for a square filament and expressed Eq. (2) in terms of
volume fraction, vf = sh/4ab; thus, a simple expression was obtained. Then,
the form of Eq. (2) (i.e., not involving volume fraction) is kept and we
point out that the thermal model for a rectangular (including square) fiber
case really is a compound model analogous to an electric circuit. Further-
more, we show numerically the dependence of composite thermal conduc-
tivity on the shape of fiber cross section by varying the ratio of fiber height
to width as a function of volume fraction.

Elliptical Fiber. For a fiber of elliptical cross section (Fig. 2), the
shape can be represented by the following equation, where h = 2a, s — 2B,
and a and B are the semiaxes in the x and y directions, respectively. The
area of the ellipse is equal to naB which is kept constant.

The resulting transverse composite thermal conductivity k22, in a
similar fashion as the circular fiber, can be expressed as
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where

Of course, if a = B = r, the radius of a circle, then Eq. (5) becomes Eq. (10)
of Ref. 1, provided we express Eq. (5) in terms of volume fraction vf =
nr2/4a2, and a = b for square packing array. In general, Eq. (5) is suitable
to use when the fiber thermal conductivity is greater than the matrix ther-
mal conductivity; otherwise Eq. (6) should be used. Based on Eq. (7), it is
not hard to see that for the case where kf is greater than km, B2 is always
less than 4, and a is always less than a. The whole combination implies that
the argument inside the square root is positive in Eq. (5). On the other
hand, if km is much greater than kf, then B is unbounded which implies
that the quantity inside the square root is always positive in Eq. (6).
Incidentally, we found an error in Ref. 1, namely, the " + " in the
denominator of the arc tangent argument in Eq. (10) should be " —."

3. FIBER SHAPE DEPENDENCE

The easiest way to illustrate the composite transverse thermal conduc-
tivity dependence on fiber shape, following Ref. 1, is to plot k22/km versus
different shape factors holding the area constant for different fiber volume
fractions, and for different fiber-to-matrix conductivity ratios kf/km for a

Fig. 3. Composite transverse thermal conductivity for a high ratio
of kf/km. The solid curves are for the elliptical fiber cross sections and
the dash-dotted curves are for the rectangular fiber cross sections.
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Fig. 4. Composite transverse thermal conductivity for a low ratio
of kf/km. The solid curves are for the elliptical fiber cross sections and
the dash-dotted curves are for the rectangular fiber cross sections.

few representative cases (Figs. 3-5). The kf/km ratios of 666 and 4.4 used
in Ref. 1 were adopted here. Furthermore, the kf/km ratio of 0.2 is
arbitrarily chosen, and Eq. (6) is used to obtain Fig. 5. Without losing any
generality, the following computations make use of the square packing
array arrangement. We further define a variable R = a/B for the elliptical
fiber case, and R = h/s for the rectangular fiber case. All figures clearly
show the strong dependence of k22/km on R.

Fig. 5. Composite transverse thermal conductivity for a ratio
of kf/km < 1. The solid curves are for the elliptical fiber cross
sections and the dash-dotted curves are for the rectangular
fiber cross sections.



4. CONCLUSION

A general expression has been derived and quantified for composite
transverse thermal conductivity for unidirectional elliptical and rectangular
cross section fibers. The results are rather interesting in that the composite
transverse thermal conductivity can be somewhat manipulated according
to the shape of the fiber cross section which may bear some consequence
in thermal management. Of course, in reality, there are no truly elliptical
fibers in existence, and even if they were to exist, controlling the fiber orien-
tation would be a major processing challenge. The problem could have
been formulated in a slightly different fashion, e.g., the transverse thermal
conductivity could have been formulated as a function of the fiber orienta-
tion angle with respect to the flow direction while maintaining the fiber
elliptical shape. However, the two different treatments would give identical
results. This simple model presented here is capable of quantifying the rela-
tionship between the composite transverse thermal conductivity and fiber
shape or its orientation.

NOMENCLATURE

2a, 2b fiber spacing in x and y directions
B dimensionless parameter, B = 2((km/kf) — 1)
Q average heat flux per unit cell length
h width of rectangular filament
s height of rectangular filament
B semiaxis of ellipse in y direction
a semiaxis of ellipse in x direction
vf volume fraction = hs/4ab for rectangular fiber

= n a B / 4 a b for elliptical fiber
k22 composite thermal conductivity in the direction normal to the

fibers
km thermal conductivity of matrix
kf thermal conductivity of fiber in the direction normal to the

fibers
R h/s ratio of width to height of rectangle
R ratio of length of semiaxis in x direction to length of semiaxis in

y direction of ellipse
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